

Estimates of regional CH₄ emissions in the Surat Basin, Queensland, Australia

Zoë Loh, David Etheridge, Ashok Luhar, Julie Noonan

CSIRO

Predicted CSG well expansion: 2015 - 2018

Modelled methane concentration signals (TAPM) from existing (LHS) and predicted (RHS) CSG operations.

	Ironbark (IBA)	Burncluith (BCA)
Instrument	Picarro G2301	Picarro G2401
Trace gases	CO ₂ , CH ₄ , (H ₂ O)	CO ₂ , CH ₄ , CO, (H ₂ O)
Intake height	10 m	10 m
Met. height (3D sonic)	5.8 m	7.6 m

Methane inventory emissions (2015), Surat Basin

Produced by environmental consultancy, Katestone (2017)

Shown as % by sector

Used in forward model run and as the prior in subsequent inversion

Notable exceptions:

- biomass burning
- wetlands
- fugitive CSG

Methane inventory emissions (2015), Surat Basin

TAPM configuration (v4.0.4)

- 1 July 2015 31 December 2016
- Inner domain: 370 x 370 km, resolution 5 x 5 km
- Outer domain: 1110 x 1110 km, resolution 15 x 15 km
- 25 vertical levels; lowest at 10m
 - Tracer 1 (Grazing cattle)
 - Tracer 2 (Feedlot + Poultry + Piggeries)
 - Tracer 3 (CSG Processing)
 - Tracer 4 (CSG Production)
 - Tracer 5 (Mining)
 - Tracer 6 (River seeps)
 - Tracer 7 (Wastewater + Wood heating + Vehicles)
 - Tracer 8 (Landfill + Ground seeps)
 - Tracer 9 (Power stations)

Background methane concentration

Forward model results

Meteorology

Methane concentrations

Inversion methodology

- Same nested domains as the forward modelling
- Tracers released from Ironbark and Burncluith (backward TAPM) to generate the source-receptor relationship required for the Bayesian analysis

18 month average

Low probability of adequately sampling the NW corner of the domain

Region of CSG activity best sampled (by design)

- 11 x 11 sources (see re-gridding next slide)
- MCMC technique for posterior PDF sampling

Synthetic inversion

- Inventory emissions re-gridded to 31 km x 31 km
 - Used to drive forward model run
 - Modelled concentration timeseries at IBA & BCA
 - Modelled timeseries + uniform prior

Total emissions 6% smaller than inventory

Inversion methodology

- Measurements used for inversion if:
 - 1000-1700 h, i.e. daytime
 - 1800-0900 h and wind speed > 3 m.s⁻¹
 - At BCA if CO < 10 ppb above background
 - Screen out biomass burning signal
 - Background [CH₄] subtracted from time-matched hourly measured concentrations (3.5 ppb uncertainty)
 - Model uncertainty specified as 20%
 - Three cases:
 - a) Broad range of emission rates (10-10,000 g.s⁻¹ per source area)
 - b) Even prior (45.37 g.s⁻¹ per source area), Gaussian uncertainty of 10%
 - c) Bottom up inventory as prior, Gaussian uncertainty of 3%

Inversion results

Very loose bounds

Total flux 6.4% smaller than inventory

High fluxes centrally consistent with inventory, but magnitude larger

Uniform prior, Gaussian uncertainty 10%

Total flux 17.7% less than inventory

Emissions distribution improved

Inventory as prior,
Gaussian uncertainty 3%

Total flux 4.4% less than inventory

Emissions are better distributed

Uncertainty in inferred emissions

Take standard deviation of the 150 MCMC samples

The grid cell with highest emissions has relatively low uncertainty

Inverse model validation

Observed and modelled timeseries

Conclusions

- A bottom-up regional methane emission inventory was compiled:
 - It yielded lower frequency and magnitude concentration peaks when used in a regional transport model, compared to measurements.
 - Possible reasons include missing or under-reported sources in the inventory, particularly near the monitoring stations.
- A top-down methodology was devised to estimate CH₄ emissions across the region:
 - combines a Bayesian inference approach, a backward setup of the regional transport model and a posterior PDF sampling scheme.
 - uses hourly observed [CH₄] from two stations and the inventory as a prior with specified uncertainties.
 - results indicate that even without a prior, the measured concentrations are able to constrain the total emissions and distribution.
 - use of the inventory as a prior leads to the best emission estimates (as judged from their ability to describe the CH₄ data).

Thank you

Dr Zoë Loh

Research Scientist

Major Greenhouse Gases Team Leader

Climate Science Centre

zoe.loh@csiro.au

+61 3 9239 4518

https://people.csiro.au/l/z/zoe-loh

Postdoc position in Melbourne, Australia

Regional methane inversion modelling (e.g. urban or CSG)

To be advertised soon

For more information, see Cathy Trudinger, Zoë Loh or Peter Rayner

